
OraclesLink: An architecture for secure oracle usage
Benedikt Berger*, Stefan Huber*, Simon Pfeifhofer§

*University of applied sciences Kufstein
Kufstein, Austria

Email : benedikt.berger@fh-kufstein.ac.at, stefan.huber@fh-kufstein.ac.at
§Distributed Ledger
Innsbruck, Austria

Email : simon.pfeifhofer@dlteam.io

Abstract—Smart contracts encode critical application logic for
realizing digital agreements in a tamper-proof form. Blockchains
guarantee that smart contracts cannot be altered after the
first deployment and that the execution is strictly followed.
Smart contracts can only operate on data available on-chain.
Oracles are bridging the gap between on-chain and off-chain
data. Oracles introduce a wide range of security risks, which
were already exploited in publicly known hacks. In this paper
OraclesLink is proposed, which is a secure and developer-friendly
architecture for using oracles within smart contracts. The goal of
the architecture is to eliminate single points of failure and single
sources of truth through distribution. In order to demonstrate
feasibility, a proof-of-concept implementation is provided.

Index Terms—Blockchain, Oracles, Ethereum, Smart Con-
tracts

I. INTRODUCTION

Blockchain technology has gained increased attention over
the last years, with its adoption and usage predicted to grow
significantly in the nearby future. A major pitfall of blockchain
networks is their inability to communicate in a standardized
way with the world outside their own network environment.
Therefore connecting on-chain data with off-chain data is a
serious problem that must be solved before blockchain systems
can be widely implemented for their proposed use cases.

Blockchain applications are implemented with smart con-
tracts. Smart contracts are executed on-chain and can op-
erate only on the managed on-chain data in the context
of transactions. Smart contracts, at least on the Ethereum
blockchain, have no native means to access off-chain data
sources. However, an off-chain component can act as a bridge
between the on-chain environment and transfer external data
on the blockchain. Such a component is commonly called an
oracle. The problem describing how those oracles can best
fulfil the necessary tasks has become known as the oracle
problem.

Oracles introduce a wide range of security risks, as impor-
tant properties of blockchains, i.e. the auditability and prove-
nance of data, cannot be applied to off-chain data sources.
Publicly known hacks, such as the attacks on trading platforms
bZx1 and Synthetix2 were caused by oracle attacks. The main
reason for the success of the attacks was a single point of
failure within the smart contract and oracle implementations.
This allowed the attackers to target a specific component which

1https://bit.ly/2NycZYM
2https://bit.ly/2A4voJL

had critical influence over the implemented oracle solution to
deliver sensitive price data.

In this paper we propose OraclesLink, an architecture which
provides a secure and developer-friendly way to apply an
oracle design pattern in smart contract development. Addi-
tionally, a proof-of-concept implementation is provided for
an exemplary use case. With the proposed approach, security
risks such as the ones mentioned above could be mitigated.
As a smart contract developer, several aspects of an oracle
implementation can be influenced to eliminate single points of
failure and single sources of truth. The proposed architecture
aims to distribute the involved parties in the on-chaining of
external data. To attain this objective, it relies on multiple
oracle service providers which each deliver data from multiple
off-chain data sources.

This paper is organized as follows: In Section II a short
introduction to the concept of oracles in blockchains is given.
Section III gives an overview of the related research. The
proposed architecture is described in Section IV and the
prototypical implementation, on the Ethereum blockchain,
is described in Section V. Furthermore the architecture is
evaluated in Section VI. A discussion including limitations
of the proposed architecture is given in Section VII. Finally,
the paper is concluded in Section VIII.

II. BACKGROUND

Smart contracts encode critical application logic for realiz-
ing digital agreements in a tamper-proof form. The alteration
of the smart contract logic and the interference of the smart
contract execution is secured by the strong guarantees a
blockchain offers. These security guarantees restrict the smart
contract to operate only on data which is available on-chain.

It must be noted that for many useful applications, access to
off-chain data is an important requirement for a smart contract.
Therefore the concept of oracles was introduced. Oracles are
bridging the gap between on-chain and off-chain data.

Fig. 1 shows a typical interaction sequence between a
blockchain and an external data source mediated by an oracle.
A smart contract is initializing (1) the data flow by requesting
external data from an oracle. The oracle queries (2) the
respective data source and receives (3) the response containing
the requested data. Finally, the oracle puts the external data on
the blockchain (4) and thus the data is available to the smart
contract.

2020 Second International Conference on Blockchain Computing and Applications (BCCA)

978-1-7281-8370-1/20/$31.00 ©2020 IEEE

Fig. 1. On-chain to off-chain communication flow with an Oracle.

The responsibility for reliably and securely providing the
external data into the tamper-proof blockchain environment
relies on the oracle architecture. Heiss et al. [1] introduced key
requirements for a holistic evaluation of such oracle architec-
tures. The requirements are summarized in the following:

• Truthfulness: Oracles and data providers must be at-
tributable and also accountable, i.e. depending on their
actions they can be penalized or rewarded.

• Safety: It must be guaranteed that the obtained data
originates from the specified data source (authenticity)
and that it has not been changed (integrity).

• Liveness: It must be guaranteed that the data source is
available at any time and that there is unrestricted access
to the data.

These key requirements were carefully considered while
designing the OraclesLink architecture and also while imple-
menting the respective prototype.

III. RELATED WORK

Several approaches have been proposed, which operate on
the oracle problem from a game-theoretical point of view.
Astraea [2] is an oracle design that decides the truth value
of binary propositions. The mechanism is based on different
user groups which vote on the truthfulness of the respective
propositions. Users are motivated by economic incentives to
provide correct answers. Shintaku [3] provides an extension
to Astraea with the aim of a complete end-to-end oracle
decentralization. Another protocol was proposed by Merlini
et al. [4] following a similar approach. Voters are presented
with antithetic questions, the convergence or divergence of the
answers are used by the oracle to determine the correctness
of the answers.

In [5] a system called Town Crier was introduced. Town
Crier offers a Trusted Execution Environment, by using In-
tel’s Software Guard Extensions. The system collects data
from HTTPS-enabled websites and publishes the data on the
Ethereum blockchain as input for respective smart contracts.

TLSNotary [6] allows a client to prove to a third party
that certain data has been obtained from a server within a
TLS session. The third party must trust the server’s public

key. E.g., the oracle provider Provable3 uses TLSNotary as an
authenticity proof for its services.

Wang et al. [7] propose an oracle implementation scheme
that supports multiple websites as data sources, which are
crawled and aggregated by the oracle service.

An empirical analysis of smart contracts deployed on the
Ethereum blockchain was done in [8]. The study showed
that oracles were mainly used by games and in financial
smart contracts. Another study [9] compared the capabilities of
available code analysis tools to detect common vulnerabilities
in smart contracts. The study revealed that no tool can identify
vulnerabilities in relation to oracles, although smart contracts
involving oracles have the highest severity level.

Al-Breiki et al. [10] compare existing oracle architectures
and explain how decentralized oracle networks could resolve
the issue of having a single point of failure.

IV. ARCHITECTURE

This section elaborates on the proposed OraclesLink archi-
tecture. The architecture aims to provide a reusable solution
for smart contract developers which allows connecting to off-
chain data sources while ensuring the previously mentioned
requirements truthfulness, safety and liveness. In order to
accomplish this goal, OraclesLink builds on the fundamental
concept of distribution. As a result of this distributed archi-
tecture approach there arise several parameters to configure
the level of distribution. Note that more distribution not only
increases security but also costs. Consequently, the architecture
comes with the ability to flexibly configure those parameters
to fine-tune the level of security for each specific use case -
if necessary.

The OraclesLink architecture is composed of various com-
ponents which are involved in the process:

• Consumer Contract: Smart contract which implements the
business logic for the use case and also uses OraclesLink
to integrate external data.

• Oracles Linker: Acts as the bridge between the Consumer
Contract and the other components. The Oracles Linker
coordinates the workflow. A smart contract developer is
using the interface of this component to integrate oracles.

• Random Oracles Provider: Provides the non-deterministic
selection of oracles.

• Oracles Store: Store for the available oracles with the
associated metadata (such as the ranking of oracles).

• Oracle: The third-party Oracle nodes, which accept and
fulfil requests.

The interaction between all the involved components is
depicted in Fig. 2. An interaction is always initiated by the
Consumer Contract. The contract uses the Oracles Linker to
build and send OraclesLinks - requests to multiple external
data sources processed by multiple oracles. To accomplish
this, the Oracles Linker selects oracles at random through
the Random Oracles Provider, sends out requests to the
selected oracles, and processes their responses. The Random

3https://provable.xyz

2020 Second International Conference on Blockchain Computing and Applications (BCCA)

Oracles Provider selects the oracles from the Oracles Store
in a non-deterministic way. In the following the components
Oracles Linker, Random Oracles Provider and Oracle Store
are described in more detail.

A. Oracles Linker
The Oracles Linker provides the interface, that consuming

smart contracts interact with, to create OraclesLinks. This
includes the parametrization of security requirements set by
the consumer contract. Furthermore, it organizes the selection
of oracles and the communication with the selected oracles.
Finally, it also includes the logic to receive oracle responses
and to combine the responses into a single result once the
respective security requirements are met.

Security requirements are based on oracle levels. Oracles are
assigned a certain level which aims to best categorize oracles
by how well they fulfil key oracle characteristics [1]. This level
is a ranking based on reputation-, validation- and trust score
following the proposed trust score for peer-to-peer networks
by Li et al. [11]. Nodes rate each other after a task has been
executed. Similar reputation and validation services were also
described in the Chainlink whitepaper [12].

For the oracle selection process, it must be ensured that
requests are distributed fairly across all available oracles.
Guaranteeing security and reliability for requests has the high-
est priority. Although, low-ranked oracles should be allowed
to participate in the selection process, as low-ranked oracles
can increase their ranking only by participation. It must be
assured that low-ranked oracles do not receive enough power
to confound results.

In general, the selection process must aim to be able to
handle the highest possible number of parties with malicious
intent without confounding the results. A measurement to
attain this objective is that the majority of selected oracles
get assigned a level that ensures a high degree of fulfilment
of key oracle characteristics.

B. Random Oracles Provider
The Random Oracles Provider provides a set of random,

duplicate-free numbers which uniquely identify oracles that
support the desired operation and meet given security require-
ments (encoded by the oracle level). This process depends on
random number generation, a functionality which is currently
not available within the deterministic nature of blockchain
environments. Thus, an off-chain service must be used to
provide true randomness.

C. Oracles Store
Oracles that are included in the selection process are

stored on-chain through the Oracles Store smart contract. This
contract must use a fair, transparent, and distributed process
for the storing, removing or updating of oracles, based on
the concept of distributed governance. We propose a round-
based process, which allows whitelisted addresses to vote for
executing updates in the Oracles Store contract.

The distributed governance is limited to whitelisted ad-
dresses, which are allowed to vote for changes. Changes are

applied once a certain threshold is reached, which defines the
minimum amount of voters required. As part of the distributed
governance, voters can propose changes to the state of the
Oracles Store such as adding or removing a whitelisted address
or altering the minimum voters’ threshold. Note that the first
whitelisted address is the address deploying the contract.

Whitelisted addresses can furthermore propose changes to
the on-chain oracle data set. For this, the whitelisted addresses
run an off-chain component which aggregates oracle data and
calculates their score to assign each oracle to a certain level.

This process is concluded in rounds as shown in Fig. 3.
Round-based processing allows to ensure a certain frequency
in which the whitelisted off-chain components provide infor-
mation. Off-chain components can propose to start a round
e.g. because they observed changes that must be reported or
because a given amount of time has passed since the last
round. Rounds are started when the minimum voters’ threshold
is reached. Off-chain components listen to an event, which
is fired when a round is started. When this happens, they
retrieve the oracle data from the third party sources, e.g. listing
services, and report this up-to-date information in the form
of change proposals to the Oracles Store. This guarantees
that all whitelisted addresses provide up-to-date data and that
all reported changes work on the same set of data obtained
from external sources. Once all change proposals have been
reported, whitelisted addresses can suggest to end a round,
which again depends on the minimum voters’ threshold. When
a round is ended, the Oracles Store coordinates the proposed
changes and applies the ones which fulfil the minimum voters’
threshold.

V. PROTOTYPE

This section outlines the implementation of the exploratory
prototype based on the architecture described in the preceding
section IV. The Consumer Contract implements an exemplary
showcase for simulating inquiry handling for frost insurance.
Frost insurance is commonly used in agriculture when crops
are at risk for temperatures falling below freezing, especially
relevant for fruit and wine growers 4. The Consumer Contract
fetches the current air temperature through the implemented
prototype of OraclesLink. Automatic insurance payout could
be triggered if the air temperature is below freezing.

The prototype is focused on the Ethereum blockchain
network and uses Chainlink as the oracle service. Chainlink
operates and provides a decentralized oracle network service.

The smart contracts are coded in Solidity, the primary
language of choice for Ethereum [13]. The tools of the Truffle
Suite5 are used for local smart contract development. The
Truffle Suite provides, amongst other functionalities, a local
Ethereum blockchain environment, testing capabilities and
support for interaction with deployed smart contracts through
a command line interface or a script-based configuration. The
implemented smart contracts furthermore rely on well estab-
lished library implementations for common features, such as

4https://www.climate.axa/products/frost
5https://www.trufflesuite.com

2020 Second International Conference on Blockchain Computing and Applications (BCCA)

Fig. 2. Sequence diagram showing the involvement of the on-chain components for the handling of a distributed oracle request (OraclesLink).

the ownership of a contract. Used third-party implementations
include the Ownable and SafeMath library by OpenZeppelin6

as well as the Median and an adapted version of the Whitelist-
ing implementations offered by Chainlink.

Finally, all smart contracts are deployed to the Ropsten
Ethereum test network with the help of Truffle and the
Ethereum node as a service provider infura.io7. The code of the
deployed smart contracts is verified on the Etherscan Ropsten
blockchain explorer.

For a detailed inspection, the source code is publicly avail-
able within a git-repository8. The README includes links to
the deployment of the application, the smart contracts, and
oracle explorers.

A. Consumer Contract implementation

The Consumer Contract demonstrates the usage of the
implemented solution. The required code in a consuming smart
contract is shown in Fig. 4. First, an OraclesLink object is built
and enriched with information regarding the external sources.
Security requirements are defined and finally, the OraclesLink

6https://github.com/OpenZeppelin/openzeppelin-contracts
7https://infura.io
8https://github.com/bergben/OraclesLinker

is sent out. The aggregated answer is received in the fulfil
callback method. Due to the dependency on the Chainlink
oracle network, the consumer smart contract must own enough
LINK tokens to pay the rewards for the oracle nodes. LINK is
a token used to pay for services within the Chainlink network.

The showcase includes a web application for a generic inter-
action with the smart contract. To interact with the Ethereum
blockchain, the web application relies on the web3.js library
[14]. The web application allows any Ethereum account with
some Ropsten test Ether to trigger the on-chain logic which
creates an OraclesLink. The web application is deployed in
the form of a decentralized application on the InterPlanetary
File system [15].

B. Oracles Linker Implementation
The code for the Oracles Linker fulfils the main objective

to provide a simple interface which allows creating distributed
off-chain requests. It implements the security requirements
and the aggregation of answers by calculating the median on
the numeric values once those requirements are met. Strongly
deviating responses from individual oracles do not affect the
aggregation method median as much as e.g. an arithmetic
mean. Furthermore, it allows the consumer contract to tweak
security requirements.

2020 Second International Conference on Blockchain Computing and Applications (BCCA)

Fig. 3. Activity diagram displaying the change proposal process in rounds
through whitelisted address for the Oracles Store smart contract.

Fig. 4. Usage of the implemented solution within a consumer smart contract.

A limitation of the Chainlink infrastructure requires an
adjustment to the aggregation process. Chainlink oracle nodes

set a default maximum gas consumption limit for their callback
transaction of 500 thousand units9. As a result, an out of gas
exception is encountered when all the required aggregation
processes are done within the final transaction that fulfils
all OraclesLink requirements. Instead, it is necessary to split
this computation and aggregate the answers for each external
source as soon as enough answers for this source have been
received.

C. Random Oracle Provider implementation

True randomness through an off-chain component is not
implemented for the scope of this proof-of-concept. An on-
chain version for random number calculation through hashing
is used instead. It uses global variables, parameters and a
seed hash combined with a nonce to generate a hash which
is transformed into a random number. Note that this should
be replaced with a true randomness provider in a production
setting.

D. Oracles Store Implementation

The implementation of the Oracles Store includes the dis-
tributed, round-based change proposal process as suggested in
chapter IV-C. While a round is active, whitelisted participants
can propose changes such as adding and removing oracles
or jobs. Chainlink requests are handled as jobs. Each job
works sequentially through a list of tasks, defined in a job
specification. This prototype focuses on the job specification
that allows fetching a numeric value from an external data
source, which is fed back to the on-chain environment in the
form of a Solidity int256 data type value.

The distributed governance functionality, which allows
whitelisted addresses to vote for alterations to the smart
contract settings, is substituted with a simpler version to limit
the scope of the implementation. The implemented version
instead allows the owner of the smart contract to tweak settings
such as changing the threshold for the minimum proposal
supporters required. In a real world scenario, the distributed
governance should be strictly implemented.

To simulate how oracle data is fed to the Oracles Store,
a script is executed within the environment provided by
Truffle. This script simulates round-based proposals with one
participating entity and feeds a list of oracles to the contract.
This list is populated manually for the scope of this proof-of-
concept work. Oracle data is retrieved from a Chainlink listing
service10 for the Ropsten Ethereum network. The oracle nodes
are categorized into three levels, based on the number of job
runs that a given oracle has executed. A more sophisticated
ranking algorithm is part of future work.

VI. EVALUATION

The architecture and the respective implementation dis-
tributes requests to fairly at random selected oracles for each
external source defined by the consuming contract. Thus, it
fulfils the goal to eliminate both a single point of failure and

9https://docs.chain.link/docs/configuration-variables
10https://market.link

2020 Second International Conference on Blockchain Computing and Applications (BCCA)

a single source of truth [10] in the application of the oracle
design pattern. Consequently, the security hacks mentioned
in Section I could have been circumvented by the proposed
architecture. For evaluating the trustworthiness of the proposed
architecture the stated oracle requirements truthfulness, safety
and liveness [1] were selected as evaluation criteria and
discussed in the following.

A. Truthfulness

In the proposed architecture the selection of oracles is
based on non-deterministic randomness combined with a given
oracle level based on a ranking. The non-deterministic se-
lection reduces the ability of an oracle to time a malicious
answer. Furthermore, oracles which provide provably altered
or malicious data can be penalized by downgrading their
ranking or by a complete elimination from the Oracles Store.

Additionally, the answers from the oracles are aggregated.
The aggregation is not generalizable and needs to be selected
according to the respective use case. In the given prototype
the weather data is gathered from 5 different sources and the
median is used as an aggregation function. The aggregation is
intended to eliminate malicious answers from oracles.

B. Safety

The component that implements the necessary logic to fulfil
safety are essentially the oracles. OraclesLink can therefore
only indirectly influence the safety criteria through the oracle
selection process (i.e., selecting oracles based on the preferred
safety requirement of the use case). The prototype uses the
decentralized oracle network provided by Chainlink. While
there are centralized oracle services available which fulfil
safety, solving this for a decentralized oracle network is a
complex task. As a result, approaches which are meant to solve
safety for Chainlink oracles, such as trusted computation, are
not in place yet. Note that as soon as Chainlink enables such
functionality, it is automatically included in the implemented
prototype.

C. Liveness

Distribution, given that the network has a reasonable number
of participants, provides a reliable oracle service with scalable
guarantees of no downtime. This leads to a scalable fulfilment
of the key characteristic liveness through the number of
participants.

VII. DISCUSSION

In this paper an architecture for using distributed oracles
was proposed. The feasibility was demonstrated by imple-
menting a prototype for an exemplary frost insurance use case.
The proposed architecture manages the complexity of ensuring
security in the usage of oracles for smart contract developers.
This eliminates the necessity for reimplementations to solve
the same reoccurring problem. Providing a design pattern or
architecture for a common problem has proven to be effective
in other areas relevant for security, such as identity manage-
ment. In the following several limitations and improvements
to the proposed architecture are discussed.

For a real world scenario, the implemented on-chain random
number generator should be replaced with a true randomness
provider like the Chainlink Verifiable Random Function11.
Note, that a solution using the Chainlink Verifiable Random
Function would have to rely on manually whitelisted oracle
nodes. Thus, it is advisable to use an on-chain provider for
random number generation with sufficient randomness e.g.
available in Ethereum 2.012.

The oracle ranking procedure used to populate the Ora-
cles Store with oracles data is deliberately kept as simple
in the implemented prototype. It relies on one third party
listing service to provide the data, conclusively introducing
a single source of truth. The prototype does enable a more
sophisticated data writing process based on distribution. Future
work should aim to implement an off-chain component which
ranks oracles by aggregating data and criteria from multiple
listing services. This off-chain component can then be run
by whitelisted participants. This process might require pay-
ment for the participating parties. Thus, an integration of the
mentioned off-chain component for oracle ranking into the
infrastructure of existing distributed oracle networks could be
desirable.

An improvement to the on-chaining of data managed by
the Oracles Store would be possible as follows: Instead
of allowing whitelisted parties to directly propose changes,
whitelisted addresses could be limited to only propose a
refresh of the data, e.g. by watching the listing services. The
Oracles Store contract itself then retrieves the data from the
external source through the solution proposed in the prototype
by triggering an OraclesLink. The Oracles Store then compares
the received data with the stored on-chain data and applies
necessary changes. Note that this is currently not possible due
to technical limitations. Firstly, cost and scaling prevent heavy
computation such as comparing a whole result set to on-chain
data. Secondly, a strict limitation of Solidity is, that calls to
on-chain methods cannot contain lengthy JSON data. Other
blockchain environments and future scaling might support the
described solution.

An unexpected limitation is encountered regarding the
availability of Chainlink oracle nodes listed for the Ropsten
test network on the used listing service. Many oracle nodes
listed are not actually available to fulfil requests. To prevent
such a situation a proper incentive model must be in place.
The automatic oracle selection implemented in the prototype
increases the incentive to run an oracle node in a decentralized
oracle network because it enables the fair distribution of
rewards for the fulfilment of requests. Conclusively, it also
increases the degree of distribution of the network, which is a
valuable metric for a decentralized network.

Scaling is a problem that blockchain technology is trying to
solve. This problem is also encountered in the implemented
prototype. The transaction that creates an OraclesLink for the
showcase e.g. consumes about 5 million gas. The current limit

11https://docs.chain.link/docs/chainlink-vrf
12https://blocking.net/7155/ethereum-2-0-randomness

2020 Second International Conference on Blockchain Computing and Applications (BCCA)

on Ropsten is roughly 7 million gas units, the limit on the
Ethereum main network was raised recently to 12.5 million. It
should be noted that optimizing for cost and scaling was not
a focal point in this work.

A major problem of current blockchain technology and
decentralized oracles is the handling of confidential data. The
URLs for the sources in the exemplary Consumer Contract
must contain the keys for authentication with the external data
sources in cleartext.

A custom solution to the above mentioned limitations
on scaling and handling of confidential data is possible by
using trusted computation environments. The combination of
blockchain technology with trusted computation has shown to
be promising [16] and is an avenue for future research in the
context of the proposed architecture.

Another threat to the requirement safety which is yet to
be solved in the usage of decentralized oracles in general
is Freeloading. Freeloading describes the process where one
oracle observes the answers given to the on-chain environment
by other oracle nodes. The cheating oracle could then provide
the same answer as the observed answer given by another
oracle. This way, the cheating oracle could potentially avoid
cost resulting from requests to a third party data source [12].
The proposed Oracle Store contract involves the functionality
to remove oracles or degrade their ranking if Freeloading is
identified.

VIII. CONCLUSION

Connecting the on-chain environment of blockchain net-
works to off-chain components is critical for the integration of
blockchain solutions in current digital infrastructures. Oracles
act as a bridge between those two environments. The usage of
oracles introduces unsafe components to the otherwise secure
blockchain network. Elimination of both a single point of
failure and a single source of truth can be used to avoid
potential attack vectors. This objective can be attained through
distribution.

An architecture is proposed and evaluated through the
implementation of a prototype. The architecture enables smart
contract developers to apply the oracle design pattern in a
way, that includes distribution across all involved components.
Although the prototype fulfils the desired goals, future work
and advancement of blockchain technology as a whole is
required for a better fit into a real-world scenario. Issues
which need to be tackled are scaling, cost and handling of
confidential data.

Future work should develop a ranking algorithm that can be
used for determining the oracle level for the selection process.
Future implementations should also aim to support multiple
decentralized oracle networks. Furthermore, solutions should
be explored to resolve the scaling and privacy issues, e.g. by
off-chaining certain functionality, such as storing credentials
for accessing external data sources.

REFERENCES

[1] J. Heiss, J. Eberhardt, and S. Tai, “From oracles to trustworthy
data on-chaining systems,” in 2019 IEEE International Conference on
Blockchain (Blockchain). IEEE, 2019, pp. 496–503.

[2] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kastania,
“Astraea: A decentralized blockchain oracle,” in 2018 IEEE Interna-
tional Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData).
IEEE, 2018, pp. 1145–1152.

[3] R. Kamiya, “Shintaku: An end-to-end-decentralized general-
purpose blockchain oracle system,” 2018. [Online]. Available:
https://gitlab.com/shintaku-group/paper/raw/master/shintaku.pdf

[4] M. Merlini, N. Veira, R. Berryhill, and A. Veneris, “On public decen-
tralized ledger oracles via a paired-question protocol,” in 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC).
IEEE, 2019, pp. 337–344.

[5] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” Cryptology ePrint Archive,
Report 2016/168, 2016, https://eprint.iacr.org/2016/168.

[6] TLSNotary, “Tlsnotary - a mechanism for independentlyaudited https
sessions.” [Online]. Available: https://tlsnotary.org/TLSNotary.pdf

[7] S. Wang, H. Lu, X. Sun, Y. Yuan, and F. Wang, “A novel blockchain
oracle implementation scheme based on application specific knowledge
engines,” in 2019 IEEE International Conference on Service Operations
and Logistics, and Informatics (SOLI), 2019, pp. 258–262.

[8] M. Bartoletti and L. Pompianu, “An empirical analysis of smart con-
tracts: platforms, applications, and design patterns,” in International
conference on financial cryptography and data security. Springer, 2017,
pp. 494–509.

[9] A. Mense and M. Flatscher, “Security vulnerabilities in ethereum
smart contracts,” in Proceedings of the 20th International
Conference on Information Integration and Web-Based Applications
& Services, ser. iiWAS2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 375–380. [Online]. Available:
https://doi.org/10.1145/3282373.3282419

[10] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic, “Trust-
worthy blockchain oracles: Review, comparison, and open research
challenges,” IEEE Access, vol. 8, pp. 85 675–85 685, 2020.

[11] L. Y.-J. D. Ya-Fei, “Research on trust mechanism for peer-to-peer
network [j],” Chinese Journal of Computers, vol. 3, 2010.

[12] S. Ellis, “A decentralized oracle network steve ellis,
ari juels, and sergey nazarov,” 2017. [Online]. Available:
https://link.smartcontract.com/whitepaper

[13] R. M. Parizi, A. Dehghantanha et al., “Smart contract programming
languages on blockchains: an empirical evaluation of usability and
security,” in International Conference on Blockchain. Springer, 2018,
pp. 75–91.

[14] W.-M. Lee, Using the web3.js APIs. Berkeley, CA: Apress, 2019, pp.
169–198. [Online]. Available: https://doi.org/10.1007/978-1-4842-5086-
0 8

[15] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,” arXiv
e-prints, p. arXiv:1407.3561, Jul. 2014.

[16] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS P), 2019, pp.
185–200.

2020 Second International Conference on Blockchain Computing and Applications (BCCA)

