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Abstract
This document proposes a solution for a sustainable secure communica-

tion for LPWAN-devices summarized- and mentioned in this document as
ALPS for Advanced Low Power Security. ALPS uses established crypto-
graphic primitives and combines them according to a framework in order
to help solution-architects and other decision-makers, which are facing the
mentioned restrictions, requirements and associated challenges.

1 Introduction

The number of connected Internet of Things (IoT) is already above 20 billions
and will increase at an even faster pace in the upcoming years [1]. A big part
of the mentioned devices will be battery powered devices which offer a limited
amount of resources, limited bandwidth and the requirement to transfer only a
small amount of data from remote-locations using the OTA-interface without an
edge-gateway.

The security aspect of such devices gets more and more important because
critical processes depend on them. End-to-end security in combination with
trusted platform modules (TPMs), trusted execution environments (TEEs) and
secure elements (SEs) are necessary for business-models like pay per use based on
sensor-data of such devices. Widely deployed solutions to ensure confidentiality,
integrity, availability and authenticity with e.g. TLS-/DTLS-ciphers with PKIs
based on x.509-certificates are currently considered as secure but they are not
well suited for the mentioned low-resource devices, because the used algorithms-
and handshaking-processes are too heavy weight in terms of computation and
the number of roundtrips. They are difficult to implement/integrate in- and
not primarily designed for such devices. Among other factors the workarounds
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created in such situations (e.g. no transport security, vulnerable custom protocols)
yields to serious security vulnerabilities in the IoT-world.

1.1 General assumptions

The general assumptions of the proposal in terms of energy-consumption are the
following:

• The transmissions and receptions on the OTA-interface consumes the
significant amount of energy.

• Given typical message-sizes (see Common characteristics) the count
of transmitted-/received-messages is more significant for the energy-
consumption than the length of each message. Handshake-only-messages
need to be avoided or reduced to a minimum.

• The algorithms and their effective implementations (in hardware or soft-
ware) which are necessary to preserve confidentiality, integrity, availability
and authenticity can further increase the lifetime of a device.

2 Use cases

In this section lists common characteristics for use cases for ALPS and shows a
reference use case to fill placeholders.

2.1 Common characteristics

ALPS targets tiny single purpose devices with one- or a few specific sensors/actors,
which use LPWAN connectivity technologies like Sigfox [2], LoRaWAN [3] and
NB-IoT [4]. A typical device lifetime will be ~5 years. The lifetime can be
reached with a battery-capacity of ~4000 mAh. Mentioned characteristics
imply devices with ~100 Mhz clock speed, ~2 MB persistent storage (flash)
and ~100 KB of volatile memory (RAM). The persistent storage contains the
firmware and can be used by the application itself to store persistent data.
For critical use cases the devices are equipped with a trusted platform module
(TPM), trusted execution environment (TEE) or secure element (SE) in order
to store cryptographic-keys and execute cryptographic-operations. Every device
has a unique identification (ID). The targeted devices runs connectivity- and
application-specific firmware/software on a single MCU. The addressed use-cases
requires a client-server-communication-model with only a few messages per
day with small payloads (~100 bytes) which will be exchanged. The resource-
optimization is crucial on client-side. On server-side it’s acceptable to use more
resources. On the transport-layer the payload to submit has to be divided in
packets. It’s acceptable to loose packets. Packets can arrive out-of-order.
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2.2 Reference use case - DigitalBikeTwin

DigitalBikeTwin (DBT) is a special (e-)bike tracker-solution which requires a
communication between the DBT-tracker and the DBT-cloud which ensures
end-to-end confidentiality, integrity, availability and authenticity. The tracker is
placed inside the frame and uses NB-IoT as cellular connectivity technology for
communication and positioning [5]. The design-goal of the tracker is to reach a
battery-powered-lifetime of 5-10 years in order to enable new business-models.
The DBT-tracker always initiates a communication and occupies the client-role.
The DBT-cloud occupies the server-role. The communication will be IP-based
on the OSI network-layer. On the OSI transport-layer UDP will be used. The
payload of every request/response will be 32-64 bytes. Only 2-8 request-response-
pairs per day are expected. Quectels LTE BC66 NB-IoT Module [6] handles
the connectivity and in addition runs the application-specific software which
is supported by the OpenCPU feature. For the ID a hash of the International
Mobile Equipment Identity (IMEI)[7] will be used. The key-material will be
predeployed in the manufacturing-process.

3 The ALPS protocol

The main goal of ALPS is to specify a generic protocol that provides state-of-
the-art security properties while maintaining a low energy footprint. For this
purpose ALPS is based on Noise [8], which defines a framework of protocols
that use state-of-the-art cryptographic algorithms and security properties like
mutual authentication and forward secrecy as it is common in recent versions of
TLS/DTLS.

Contrary to TLS however, Noise allows for various handshake patterns
to be defined, which in the case of ALPS help to reduce the amount
of send/receive operations on low power devices. ALPS selects the
Noise_KK_25519_ChaChaPoly_BLAKE2s protocol variant which uses the
following cryptographic algorithms best suited for the mentioned use cases:

• Curve25519 is used for Diffie-Hellman (DH) key exchange operations
• ChaCha20-Poly1305 is used as AEAD cipher
• BLAKE2s is used as hash function

The Noise KK pattern was selected because the setting for ALPS is that of a
closed system where the server knows all its clients and the clients communicate
with a single known server. This inherit trust between clients and server is
achieved by the long-term static DH keypairs (consisting of a public and private
key) of each participant, which have to be predeployed.

3



3.1 Long-term keys

The Noise KK patterns defines a long-term, static DH keypair for initiator and
responder (client and server in ALPS case) of the protocol. These keypairs are
generated in advance and predeployed on the corresponding devices.

In the case of ALPS this means that each client is provisioned with the server’s
static DH public key and its own static DH keypair. The server on the other
hand knows the static public keys of all clients and its own static DH keypair.

3.2 Handshake

Whenever a client wants to send an application-level message to the server or
vice-versa, a secure session is required, which holds the security parameters to
encrypt and authenticate this message before sending it.

We keep to the [8] terminology and distinguish between handshake messages
and transport messages. Handshake messages are exchanged to establish
the security parameters for securing the transport messages which themself
encapsulate the application-level payload. This means that devices initially
exchange handshake messages followed by transport messages.

This session is established by a simple 1-RTT handshake pattern as defined by
Noise KK:

1. The initiator (mostly the client) generates an ephemeral DH keypair.
2. The initiator executes a DH between its ephemeral key and the server’s

static public DH key (es) followed by its own private static key and the
server’s static public key (ss). This establishes the first usable encryption
state.

3. The initiator sends the initial handshake message to the responder (ie.
server)

4. The responder also generates an ephemeral DH keypair and executes a DH
twice (ee, se) as defined in [8].

5. The responder sends its handshake response to complete the handshake

For full implementation details, see [8].

After the handshake is finished, the secure session is established and client and
server can securely exchange messages using the key(s) of the session.

3.3 Zero-RTT messaging option

ALPS also enables zero-RTT messaging such that the initial handshake messages
can already contain an application payload. This is especially useful to save
energy on the client because the first (handshake) message of a session can
contain application data and a entire roundtrip can be avoided.
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While this option allows to save energy, it also has less strong security properties
than messages sent after the full session was established. Since any payload data
sent within the handshake depends on the long-term static keys of initiator and
responder, a key compromise of these keys will compromise the security of those
messages. The full details are documented in [8, Ch. 7.7].

It is up to the user of ALPS if Zero-RTT is used or not. ALPS suggests to use
Zero-RTT in order to save energy.

3.4 Session handling

ALPS does support connectionless transport protocols like UDP and is intended
to work on top of such. This does however add some drawbacks:

• Messages can be lost
• Messages might arrive out of order
• Higher denial-of-service risks

3.4.1 Session state handling

To handle out-of-order message delivery and message loss, sender and responder
maintain three session states (the approach is basend on [9]):

• Current session: the currently used session state
• Previous session: previously used session
• Next session: future session

The current session holds the session which is currently used for decryption
of received transport messages in the responder and for encrypting transport
messages in the responder.

The previous session holds the session state, which was the current state before.
This is needed to decrypt any old messages that were sent before the new session
was established, but delivered to the responder after the handshake messages
for the new session.

The next session is only maintained by the responder. It contains the next
session which will be used. This session is filled whenever a new handshake
is received and the response is sent. Since the response can be lost and never
delivered to the initiator of the handshake, it might never be used. Thus this
new session state is kept as next session until the first transport message using
this session is received.

Whenever a transport message - using the next session state - is received, the
session states are rotated and previous session is cleared (zeroed) and replaced
by the value of current session. The current session is replaced by the value
of next session. Next session is then also cleared. In case a new handshake
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is received instead of a transport message using next session, next session is
simply cleared (zeroed) and replaced with this new session. Current session and
previous session remain unchanged.

Note that messages which cannot be decrypted using any of these three states
are dropped. This means that messages that are delayed for a very long time
before being delivered to the responder, will never be received by the application.

Creation of new sessions is always up to the initiator of the connection. This
will support situations where the initiator loses its session state (e.g. through a
power cycle). Situations where the responder loses its state are handled by the
responder simply dropping messages since it has no active state. If that happens,
the initiator will never receive a response and has to initiate a new session before
sending any new messages. This also means that it is required for the responder
to acknowledge transport messages. It’s up to the initiator (within preset limits,
see Rekeying) to decide how many messages without acknowledge are allowed to
submit using the same session.

3.4.2 Explicit nonces

A message can be delivered out-of-order or even be lost, it is required to sync
the nonce value (n in [8]) between sender and responder. This is done by sending
the nonce as part of the transport and handshake message.

To prevent replay attacks of transport messages, the responder keeps track of
used nonce values by using a sliding window. This sliding window is kept per
session state and any message which reuses a nonce value for the same session is
dropped.

An efficient implementation of the sliding can be found in [10]. In terms of the
mentioned RFC ALPS suggest to use N=8 and M=2 which yields to a supported
window size of (M-1)*N=8 which is appropriate for ALPS use cases.

3.4.3 Rekeying

ALPS is designed for IoT and sensor networks, therefore a session will be initiated
by the client.

ALPS doesn’t use rekeying as specified by [8, Ch. 11.3]. ALPS performs a new
handshake in order to establish a new session. According to Noise, a single session
has to consider the upper limit of a maximum of 2ˆ64-1 transport messages
and every transport message can be less than or equal to 65535 bytes in length.
ALPS suggests a new handshake to be performed every 30 days of after 10 KB
of transmitted data (whatever comes first). The frequency of the handshake
is a tradeoff between power-consumption and session-duration/-volume with
associated information leakage in case of a key-compromise.
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On client- and server-side the re-handshake criteria are known. The negotiation
of the criteria is not part of ALPS because it highly depends on the application.
The client is responsible for the re-handshake. If the server detects a violation
of the re-handshake it drops all messages until a new handshake is received.

3.5 Message format

As with Noise, the theoretical upper size limit for ALPS messages is 65535 bytes.

ALPS distinguishes between two different message types:

• Handshake
• Transport

Zero-RTT handshake messages are mentioned explicitly.

Table 1: Format of handshake-messages

field length (byte) encrypted fixed-value
type 1 no 0x01
id 4 no
nonce 8 no
ephemeral public key 32 no
timestamp 12 yes
auth-tag 16 yes

Table 2: Format of transport-messages

field length (byte) encrypted fixed-value
type 1 no 0x02
id 4 no
nonce 8 no
ciphertext 0 - 65502 yes
auth-tag 16 yes

Table 3: Format zero-RTT-messages

field length (byte) encrypted fixed-value
type 1 no 0x01
id 4 no
nonce 8 no
ephemeral public key 32 no
timestamp 12 yes
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field length (byte) encrypted fixed-value
ciphertext 0 - 65502 yes
auth-tag 16 yes

The field type is necessary to distinguish between handshake- and transport
messages. The field id allows to identify the party (client or server) which
transmits a message and lookup the predeployed long-term public static DH
keys. The field nonce has to be part of any message because ALPS supports
transports where messages will be lost or arrive out-of-order [8, Ch. 11.4]. The
field ephemeral public key is part of the handshake-messages in order to allow
the DH operations. As countermeasure for replay-attacks the field timestamp is
part of any handshake message in order to avoid disruption of ongoing secure
sessions [9, Ch. 5.1]. The field auth-tag is part of any message and delivered
by- or fed into the ChaCha20-Poly1305 AEAD cipher.

4 Security properties

This chapter discusses the thread model and security properties of ALPS. Many
will match those defined by [8].

4.1 Choice of algorithms

For the DH function we use X25519 [11] since it is the most appropriate selection
for ALPS. The most suitable alternative is X448. Curve25519 and Curve448 are
intended for different security levels: Curve25519 for ~128 bits. Curve448 for
~224 bits [12]. X448 might offer extra security in case a cryptanalytic attack
is developed against elliptic curve cryptography. Software-implementations of
X25519 are very likely to execute faster and consume less energy in comparison to
X448 for ALPS use cases. X25519 is recommended by [8, Ch. 13] in combination
with the later on selected hash function.

Chacha20-Poly1305 was selected as symmetric cipher in ALPS because there
exists a considerable faster software implementations over AES-GCM [13]. Addi-
tionally, implementations of Poly1305 are quite straightforward and easy to get
right [14]. ChaCha20-Poly1305 has recently seen more widespread adoption as
alternative to AES-GCM in major protocols like TLS [15] and IPSec [16].

The BLAKE2s [17] [18] hash function is used by ALPS. BLAKE2s is a hash
function which was first released 2012, has a high adoption and no known security
issues.

It clearly outperforms the second candidate SHA256 [19]. ALPS favors
BLAKE2s over BLAKE2b because BLAKE2b is optimized for 64-bit platforms
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and BLAKE2s for smaller architectures. The ALPS use cases focus on 32- or
even less bit architectures.

See the chapter future optimizations for future alternatives to the current choices.

4.2 Denial-of-service mitigation

In order to ensure availability requests to unknown IDs- and too frequent requests
of a single address or (known) ID will be blocked. On client- and server-side the
communication will be limited to two destination-endpoints and only requests
from authenticity- and integrity-verified known IDs will be processed.

4.3 Information leakage

ALPS will prevent major information leakage by encrypting any application
data. On the other hand, some metadata will be leaked. That is:

• ID
• Message size
• Client and server network addresses

The ID should be a hash of the underlying device identifier. It is possible for
users of ALPS to add padding to each message to obscure the actual message
size.

4.4 Collision attacks

Collision attacks as described by [20, pp. 33–35] exploit excessive reuse of the
same key. Birthday attacks are based on the birthday paradox of probability
theory and consider the likelihood of key reuse. Meet-in-the-middle attacks go a
step further and an attacker precomputes the ciphertext under a (large) set of
random keys for a single selected message and thus increases the likelihood to
find a key reuse. This also requires the same plaintext to be transmitted.

For meet-in-the-middle attacks the attacker requires the plaintext to be sent
to match the plaintext used for his precomputed lookup table. For ALPS use
cases in sensor networks, this is actually easily achieved, if the attacker is able
to influence the sensor measurements (e.g. position, temperature).

ALPS prevents these kinds of attacks by regular rekeying through new session
states.
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4.5 Replay protection

An attacker with the capability to capture network traffic between server and
client and retransmit these packets can launch replay attacks on the protocol. De-
pending on the protocol payload this can eg. transmit false sensor measurements
or simply outdated data.

ALPS prevents these kinds of attacks for handshake-messages with timestamps.
For transport-messages the sliding-window and an explicit nonce are in place for
prevention.

4.6 Forward secrecy

Key exposure is generally fatal for any security system. To mitigate it, ALPS
provides forward secrecy by using ephemeral DH keys in the handshake to
establish individual session keys. The session keys are expiring after a certain
time has passed or certain amount of data was transmitted (whichever comes
first).

Should an attacker be able to find the key of a single session, the security of the
other sessions is still intact since their keys were chosen independently.

Note the security implications of using the Zero-RTT messaging option as for
this case, long-term, static key compromise is worse than for regular transport
messages.

5 Implementation notes

5.1 Key storage

The private keys of each static keypair have to be stored securely on the individual
devices. The details on how this has to be achieved is up to the application.
However, hardware security modules (HSMs) are commonly used for such tasks.
Low-power devices often have hardware features that allow for secure storage.
One example is the i.MX6 CAAM engine.

5.2 Random number generation

The protocol requires a random number generator (RNG) to generate ephemeral
and static DH keypairs. Since static keypairs are required during the provisioning
phase, these keys can be generated offline on specialized hardware with true
random number generators (TRNG).
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The ephemeral DH keypairs on the other hand have to be generated on each
client and thus the client requires proper number generation. Common low
power hardware today offers hardware-based RNGs that can be utilized for this
purpose.

6 Future optimizations

This section lists future optimizations for ALPS.

6.1 Alternative cryptographic algorithms

The FourQ [21] DH function offers better performance and less energy-
consumption across different architectures and without the consideration of
specific hardware as Curve25519 [11]. There are efficient implementations avail-
able (e.g. FourQLib [22]) and special countermeasures for side-channel-attacks
exist. For ALPS, which is a proposal for a sustainable solution which can be
implemented at the time of writing, FourQ was not selected as primary DH
function because it is quite new and not yet very widespread. In contrast,
Curve25519, first released 2005, has withheld more research since then and
has currently wider adoption. However FourQ is a promising alternative for
Curve25519 that will allow future version of ALPS to further reduce energy
consumption while maintaining a similar level of security.

Potential candidates for symmetric ciphers are the two finalists for use case
1 of the CAESAR challenge [23] ASCON [24] and ACORN [25]. Both are
lightweight AEAD ciphers that are promising competitors for AES-GCM and
ChaCha20-Poly1305.
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